1,521 research outputs found

    The Green--Schwarz Superstring in Extended Configuration Space and Infinitely Reducible First Class Constraints Problem

    Get PDF
    The Green--Schwarz superstring action is modified to include some set of additional (on-shell trivial) variables. A complete constraints system of the theory turns out to be reducible both in the original and in additional variable sectors. The initial 8s8s first class constraints and 8c8c second class ones are shown to be unified with 8c8c first and 8s8s second class constraints from the additional variables sector, resulting with SO(1,9)SO(1,9)-covariant and linearly independent constraint sets. Residual reducibility proves to fall on second class constraints only.Comment: 14 pages, LaTe

    Interacting Random Walkers and Non-Equilibrium Fluctuations

    Full text link
    We introduce a model of interacting Random Walk, whose hopping amplitude depends on the number of walkers/particles on the link. The mesoscopic counterpart of such a microscopic dynamics is a diffusing system whose diffusivity depends on the particle density. A non-equilibrium stationary flux can be induced by suitable boundary conditions, and we show indeed that it is mesoscopically described by a Fourier equation with a density dependent diffusivity. A simple mean-field description predicts a critical diffusivity if the hopping amplitude vanishes for a certain walker density. Actually, we evidence that, even if the density equals this pseudo-critical value, the system does not present any criticality but only a dynamical slowing down. This property is confirmed by the fact that, in spite of interaction, the particle distribution at equilibrium is simply described in terms of a product of Poissonians. For mesoscopic systems with a stationary flux, a very effect of interaction among particles consists in the amplification of fluctuations, which is especially relevant close to the pseudo-critical density. This agrees with analogous results obtained for Ising models, clarifying that larger fluctuations are induced by the dynamical slowing down and not by a genuine criticality. The consistency of this amplification effect with altered coloured noise in time series is also proved.Comment: 8 pages, 7 figure

    Low energy polarization sensitivity of the Gas Pixel Detector

    Full text link
    An X-ray photoelectric polarimeter based on the Gas Pixel Detector has been proposed to be included in many upcoming space missions to fill the gap of about 30 years from the first (and to date only) positive measurement of polarized X-ray emission from an astrophysical source. The estimated sensitivity of the current prototype peaks at an energy of about 3 keV, but the lack of readily available polarized sources in this energy range has prevented the measurement of detector polarimetric performances. In this paper we present the measurement of the Gas Pixel Detector polarimetric sensitivity at energies of a few keV and the new, light, compact and transportable polarized source that was devised and built to this aim. Polarized photons are produced, from unpolarized radiation generated with an X-ray tube, by means of Bragg diffraction at nearly 45 degrees. The employment of mosaic graphite and flat aluminum crystals allow the production of nearly completely polarized photons at 2.6, 3.7 and 5.2 keV from the diffraction of unpolarized continuum or line emission. The measured modulation factor of the Gas Pixel Detector at these energies is in good agreement with the estimates derived from a Monte Carlo software, which was up to now employed for driving the development of the instrument and for estimating its low energy sensitivity. In this paper we present the excellent polarimetric performance of the Gas Pixel Detector at energies where the peak sensitivity is expected. These measurements not only support our previous claims of high sensitivity but confirm the feasibility of astrophysical X-ray photoelectric polarimetry.Comment: 15 pages, 12 figures. Accepted for publication in NIM

    Normal tissue complication probability (NTCP) parameters for breast fibrosis: pooled results from two randomised trials

    Get PDF
    Introduction: the dose–volume effect of radiation therapy on breast tissue is poorly understood. We estimate NTCP parameters for breast fibrosis after external beam radiotherapy.Materials and methods: we pooled individual patient data of 5856 patients from 2 trials including whole breast irradiation followed with or without a boost. A two-compartment dose volume histogram model was used with boost volume as the first compartment and the remaining breast volume as second compartment. Results from START-pilot trial (n?=?1410) were used to test the predicted models.Results: 26.8% patients in the Cambridge trial (5?years) and 20.7% patients in the EORTC trial (10?years) developed moderate-severe breast fibrosis. The best fit NTCP parameters were BEUD3(50)?=?136.4?Gy, ?50?=?0.9 and n?=?0.011 for the Niemierko model and BEUD3(50)?=?132?Gy, m?=?0.35 and n?=?0.012 for the Lyman Kutcher Burman model. The observed rates of fibrosis in the START-pilot trial agreed well with the predicted rates.Conclusions: this large multi-centre pooled study suggests that the effect of volume parameter is small and the maximum RT dose is the most important parameter to influence breast fibrosis. A small value of volume parameter ‘n’ does not fit with the hypothesis that breast tissue is a parallel organ. However, this may reflect limitations in our current scoring system of fibrosi

    Flavour Universal Dynamical Electroweak Symmetry Breaking

    Get PDF
    The top condensate see-saw mechanism of Dobrescu and Hill allows electroweak symmetry to be broken while deferring the problem of flavour to an electroweak singlet, massive sector. We provide an extended version of the singlet sector that naturally accommodates realistic masses for all the standard model fermions, which play an equal role in breaking electroweak symmetry. The models result in a relatively light composite Higgs sector with masses typically in the range of (400-700)~GeV. In more complete models the dynamics will presumably be driven by a broken gauged family or flavour symmetry group. As an example of the higher scale dynamics a fully dynamical model of the quark sector with a GIM mechanism is presented, based on an earlier top condensation model of King using broken family gauge symmetry interactions (that model was itself based on a technicolour model of Georgi). The crucial extra ingredient is a reinterpretation of the condensates that form when several gauge groups become strong close to the same scale. A related technicolour model of Randall which naturally includes the leptons too may also be adapted to this scenario. We discuss the low energy constraints on the massive gauge bosons and scalars of these models as well as their phenomenology at the TeV scale.Comment: 22 pages, 3 fig

    Lesbian and bisexual women's human rights, sexual rights and sexual citizenship: negotiating sexual health in England.

    Get PDF
    Lesbian and bisexual women's sexual health is neglected in much Government policy and practice in England and Wales. This paper examines lesbian and bisexual women's negotiation of sexual health, drawing on findings from a small research project. Themes explored include invisibility and lack of information, influences on decision-making and sexual activities and experiences of services and barriers to sexual healthcare. Key issues of importance in this respect are homophobic and heterosexist social contexts. Drawing on understandings of lesbian, gay and bisexual human rights, sexual rights and sexual citizenship, it is argued that these are useful lenses through which to examine and address lesbian and bisexual women's sexual health and related inequalities

    Boundary driven zero-range processes in random media

    Full text link
    The stationary states of boundary driven zero-range processes in random media with quenched disorder are examined, and the motion of a tagged particle is analyzed. For symmetric transition rates, also known as the random barrier model, the stationary state is found to be trivial in absence of boundary drive. Out of equilibrium, two further cases are distinguished according to the tail of the disorder distribution. For strong disorder, the fugacity profiles are found to be governed by the paths of normalized α\alpha-stable subordinators. The expectations of integrated functions of the tagged particle position are calculated for three types of routes.Comment: 23 page

    Investigation into current industrial practices relating to product lifecycle management in a multi-national manufacturing company

    Get PDF
    Product Lifecycle Management (PLM) systems have gained growing acceptance for managing all information relating to products throughout their full lifecycle, from idea conceptualisation through operations to servicing and disposal. This paper, through an in-depth exploratory study into a leading power generation manufacturing organisation, presents current PLM issues experienced by manufacturing companies, exploring three separate topics: 1) PLM, 2) Knowledge Management and Lessons Learnt and 3) Product Servicing and Maintenance. Following a review of published literature, results of the investigation are presented, analysing the responses of 17 employees interviewed. With respect to Product Development, it was found that information traceability is time consuming and change management requests take too long to complete. Results relating to knowledge management indicate that the Company operates a ‘who you know’ culture, but do aim to capture lessons learned on the manufacturing shop floor and assembly lines. Therefore, a prototype design is proposed to integrate the capturing of lessons learnt within the existing PLM system

    Self-Similar Factor Approximants

    Full text link
    The problem of reconstructing functions from their asymptotic expansions in powers of a small variable is addressed by deriving a novel type of approximants. The derivation is based on the self-similar approximation theory, which presents the passage from one approximant to another as the motion realized by a dynamical system with the property of group self-similarity. The derived approximants, because of their form, are named the self-similar factor approximants. These complement the obtained earlier self-similar exponential approximants and self-similar root approximants. The specific feature of the self-similar factor approximants is that their control functions, providing convergence of the computational algorithm, are completely defined from the accuracy-through-order conditions. These approximants contain the Pade approximants as a particular case, and in some limit they can be reduced to the self-similar exponential approximants previously introduced by two of us. It is proved that the self-similar factor approximants are able to reproduce exactly a wide class of functions which include a variety of transcendental functions. For other functions, not pertaining to this exactly reproducible class, the factor approximants provide very accurate approximations, whose accuracy surpasses significantly that of the most accurate Pade approximants. This is illustrated by a number of examples showing the generality and accuracy of the factor approximants even when conventional techniques meet serious difficulties.Comment: 22 pages + 11 ps figure
    • 

    corecore